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Abstract—In the context of brain-computer interfacing, it is
important to investigate what regions of the brain a classifier
focuses on. For one, this will clarify to what extent the classifier
relies on brain activity, as opposed to undesirable non-cortical
signals. More generally, the practice is informative as it allows
conclusions to be drawn about the cortical regions—and thus,
cortical functions—that contribute to the effect under investiga-
tion. In this study, we start to investigate different methods to
visualise the regions of interest of classifiers based on windowed
means and on common spatial patterns. Specifically, we take
individually reconstructed source spaces and transform the clas-
sifier filter weights into relevance weights indicating the relative
contribution of each source to the classifier. This is visualised
across participants in an average brain. By decomposing the
classifier weights into separate sources and localising these in
the brain, this method provides a tool to evaluate classifiers and
test hypotheses.

I. INTRODUCTION

A brain-computer interface (BCI) allows an output channel
to be established from a user’s brain to a computer—an output
channel “that is neither neuromuscular nor hormonal” [1].
Such a channel can be used in various ways. For example,
it allows paralysed or locked-in patients to communicate with
the outside world using mental spellers [2] and brain-actuated
prostheses [3]. BCI-based systems enable people to control
such and other devices using only their brain activity.

A passive brain-computer interface (pBCI) [4] is a BCI
system that uses similar hard- and software in order to interpret
ongoing, “natural” brain activity [5] that is not meant to control
a device. Instead, such brain activity reflects the human user’s
cognitive or affective state. Passive BCI-based quantifications
of mental states are used as implicit input to support ongoing
human-computer interaction [6].

With recent trends in neuroadaptive technology and pBCI
itself [7], [8], [9], [10], as well as advances in signal acqui-
sition hardware [11], such real-world pBCI applications have
become increasingly close at hand. In particular, electroen-
cephalography (EEG) has become increasingly mobile [12].
An important issue with EEG however, is that many different
sources of activity combine to form the final signal measured
at the scalp. This includes not just numerous cortical sources,
but all electromagnetic activity present in the body as well
as in the environment. Notably, eye and muscle artefacts can
contaminate the data.

During EEG experiments in realistic contexts, a great
amount of eye and muscle activity is to be expected. Further-
more, this activity can be highly correlated to the experimental
conditions. A classifier trained to distinguish between data
reflecting different conditions can thus be highly influenced
by such non-brain activity. Because of this, it is important to
verify to what extent an advertised brain-computer interface
system is indeed based on brain activity. For example, when
a system is intended to measure negative affect from brain
activity, it may inadvertently use activity from the corrugator
muscle of the face [13]. Such a system may not be as reliable
in different contexts (e.g. where sunshine leads to excessive
squinting), and may be more accurately categorised as a form
of physiological computing [14].

While detection of non-brain influences is one specific
case where extended feature analysis can provide important
answers, understanding the relative contributions of different
brain sources is another. A classifier is trained to distinguish
between different conditions using any and all information
available. This makes it a powerful method to distinguish
between brain activity in different conditions [15], but also
means that the classifier can be influenced by a variety
of cognitive processes. For example, even when targeting a
specific cognitive process such as motor imagery, activity from
other processes may interfere with the recordings [16] and
affect the classifier. Knowing what information carries what
weight can help to validate the classifier and the experimental
paradigm. If the cortical areas that a classifier focuses on
can be identified, this may provide insights into the different
cognitive processes underlying the investigated effects. When
a classifier’s primary source of distinguishing brain activity
comes from the visual cortex, for example, this may hint that
low-level sensory aspects of the stimuli were more important
than further cognitive interpretation of those stimuli. Such
insights can also be used to improve experimental paradigms
and BCI training methods [17].

In this paper we explore, with simulated data, aspects of a
method used earlier [18] to visualise in a three-dimensional
head volume the areas of the brain a BCI classifier focuses
on. The original method applied only to windowed-means
classifiers of event-related potentials [19]; here we describe
an adaptation of that method, as well as an extension that
applies to common spatial patterns [20].



Fig. 1. Ground-truth locations in the brain of the simulated class-dependent signals, covering the 1.5 cm maximum deviation. In data set 1, source numbers
1 and 2 generated ERPs in one class, but not in the other. In data set 2, 1 and 2 generated alpha activity in one class, while 3 and 4 did so in the other.

II. METHODS

A. Data Simulation

In order to have a known ground truth to evaluate the
method, we used simulated EEG data. This was generated
using SEREEGA [21], an open-source toolbox dedicated to
simulating event-related EEG activity. Using the New York
Head model and lead field [22], two sets of 64-channel data
were simulated. Each data set consisted of two conditions
(classes) for the classifier to distinguish.

a) Data set 1: This data set contained systematic class
differences in the temporal domain. One class consisted en-
tirely of brown noise emanating from 64 sources spaced
throughout the brain. The second class consisted of equally
arranged noise, along with two event-related potentials (ERPs)
emanating from two selected sources, respectively (numbered
1 and 2 in Figure 1). The second source’s ERP had an
average amplitude four times greater than the other; however,
this larger-amplitude ERP only occurred randomly in 25% of
epochs of that class. Single epoch amplitudes varied by 20%.
Both peaked at 300 ms ± 50 with a width of 200 ms ± 40.

b) Data set 2: This data set contained systematic class
differences in the spectral domain. Both classes contained
brown noise emanating from 64 sources spaced throughout the
brain. Furthermore, each class contained additional uniform
white noise filtered between 8 and 14 Hz, emanating from two
sources each. In both classes, one source’s signal amplitude
was twice that of the other. (From Figure 1, source numbers
1 and 2 were active in one class; 3 and 4 in the other.)

Note that the sources selected here do not reflect any
deliberately chosen functional region. For the purposes of this
paper, the selected regions’ neuroscientific significance is not
relevant: we merely wish to reconstruct their locations.

Each data set mentioned above consisted of 10 simulated
‘participants’. The non-noise brain source locations were rel-
atively consistent across these participants, differing up to
1.5 cm across participants. (Note that a small shift in position
can lead to a significant change in projection as, due to the
cortical folds, the source will be oriented differently relative

to the scalp.) The other sources were randomly distributed for
each participant. A total of 100 epochs of 800 ms each were
simulated for each class.

The signal-to-noise ratio was controlled in such a way that
a cross-validated estimate of the classifier accuracy would
roughly average 75–80%, which are common rates for BCI
applications.

B. Classifier Visualisation in Putative Source Space

1) Separation of the Data into Sources: We wish to vi-
sualise a classifier in putative source space. To that end,
independent of any BCI classifier, the data must first be
separated into putative sources. Different methods exist for this
purpose. In this paper, we use independent component analysis
(ICA) [23] as an example. ICA is a blind source separation
method that decomposes the data x into statistically maximally
independent sources s by finding a transformation or ‘unmix-
ing’ matrix A such that x = As. A is a filter matrix weighting
the individual channel activations in sensor space to obtain the
identified independent component activations. Inversely, A−1

contains the forward model of these components, i.e., their
projections onto the scalp. Other source separation methods
will produce different contents of A, but their application in
this method is essentially the same.

Independent EEG sources are dipolar [24]. We can thus fit
an equivalent dipole model to the forward ICA decomposi-
tion, e.g. using the EEGLAB toolbox DIPFIT 2.3 [25]. The
dipole model provides a 3D localisation for each independent
component that minimises the residual variance between the
dipole and the component projections.

For the results in this paper, since we used simulated data,
we did not calculate A on the data. Instead, we obtained the
ground-truth mixing matrix directly from the simulation. The
equivalent dipole model however was calculated separately
using DIPFIT.

2) Obtaining a Classifier: The method presented here
applies to linear discriminant analysis (LDA)-based spatio-
temporal classifiers. In particular, we present results for com-
mon spatial patterns and the windowed-means approach.



In the windowed-means approach (WM) [19], the mean
amplitudes of the scalp activations at each electrode and in
each time window are extracted as features, to which shrinkage
LDA is applied to separate the classes. This results in LDA
filter weights wWM = Σ−1

WM(µ1 − µ2) where µ1 and µ2 are
the mean of the features for classes 1 and 2 respectively and
ΣWM is the common class covariance.

Common spatial patterns (CSP) [20] are used to extract
features in the frequency domain. CSP finds the optimal set of
filter weights that maximise the variance of the filtered signal
for one class while simultaneously minimising it for the other.
Usually the top m < C

2 filters for each class are selected,
where C is the number of channels. The data in each epoch is
spatially filtered to this new pseudo-channel space and the log
of the signal’s variance on each pseudo-channel is selected as
the set of features for the classifier. We then apply a shrinkage
LDA, resulting in LDA filter weights wCSP.

3) Obtaining a Classifier’s Forward Model: In case of
the WM classifier, the LDA filter weights cannot be neuro-
physiologically interpreted. As Haufe et al. explain, “classifier
weights can exhibit small amplitudes for measurement chan-
nels containing the signal-of-interest, but also large amplitudes
at channels not containing this signal” [26]. Therefore, we
must first transform the LDA filter weights into patterns. For
this paper, we did this by multiplying the LDA filter weights
of the backward model by the regularised LDA’s common
covariance matrix (as opposed to the non-regularised version
[26]). Thus, the patterns pWM = ΣWMwWM = µ1 − µ2 show
the differential scalp activity between classes.

For the CSP classifier, let CSP filters be columns of the
matrix W ∈ RC×C . CSP patterns are then defined to be
columns of P = (W−1)T ∈ RC×C . Essentially, P and W
are the forward and backward models, respectively. However,
not each of the selected CSP filters contributes equally to
classification. Their respective contributions depend on the
LDA weights that were trained on their features. Here, the
same LDA filter weight issues apply that were mentioned
above. We thus transform these into interpretable weightings or
forward weights indicating their relative contributions: w̃CSP =
ΣCSPwCSP where ΣCSP ∈ R2m×2m is the common covariance
of the CSP features from classes 1 and 2. We use these
forward weights to scale the CSP patterns for visualisation:
let Psel ∈ RC×2m be the CSP patterns corresponding to the
2m selected CSP filters, then the i-th column in pCSP is the
i-th column in Psel scaled by the i-th element in w̃CSP.

We now have patterns representing the forward model for
these classifiers in the form of weights for each electrode. For
WM, we have one pattern for each time window. For CSP, we
have m weighted patterns for each class.

4) Projecting the Classifier Patterns into Source Space:
The ICA’s unmixing matrix A−1 transforms sensor-level scalp
activations into source activations. Similarly, it can transform
sensor-level weights into corresponding weights in source
space. When patterns contain class-relevant scalp projections,
projecting these into source space gives us the relevance
weights wr = |A−1p| that indicate how the different source

activations linearly combine to create these patterns. In other
words, the relevance weights reflect to what extent the sources
contribute to the patterns. By extension, the relevance weights
thus reflect to what extent the sources contribute to the class
differences. For our purpose, the sign of the weights is not
relevant at this point, hence we take the absolute value.

In case of WM, we now have one set of relevance weights
per time window per participant. In case of CSP, we have 2m
sets per participant. Each set contains as many weights as we
have independent components for that participant.

5) Alternative Source Weights: Using different methods can
give different perspectives on the data. We have explained
how sensor-level patterns can be transformed to obtain source-
level relevance weights. Alternatively, source-level weights
can be calculated in source space directly, independent of
the classifier. For example, we can use Pearson correlation
to obtain a set of weights for the WM case.

To that end, we first repeat the feature extraction in source
space, i.e., we obtain the mean of each source activation in
each time window. We then calculate the correlation coefficient
between these source features Fs and the vector of true class
labels L to obtain a set of weights wWMcorr = |corr(Fs, L)|.
The sign is irrelevant for our purpose.

6) Visualising Relevance Weights in Source Space: In case
of WM, we generate one visualisation per time window, each
illustrating the sources contributing to the class differences at
that time. In case of CSP, we generate one per class, illustrating
the sources distinctive for that class.

For each time window or class, respectively, the obtained
relevance weights are distributed to the dipole locations of the
corresponding sources for each participant. We then generate
a weighted 3D kernel density plot containing these weights
for all participants in one plot. For this, we use the EEGLAB
plug-in dipoleDensity v0.36 [27] which aligns the output to
slices of the mean MNI brain. For the figures in this paper,
we used a smoothing kernel of 12 mm.

III. RESULTS

Figure 2 shows the output of the presented method for
all participants in one case. The top left shows the sorted
distribution of the relevance weights. The other panels show
different slices of the mean MNI brain along with the colour-
coded weighted dipole density, or ‘relevance density’. The
sparse distribution indicates that a relatively small number
of sources receive a relatively high percentage of weights. In
other words, the method shows that the differences between
the classes can be traced back to a relatively specific area in
the brain.

Figure 2 visualises class 1 of the CSP classifier calibrated
on data set 2. We see that the most dense, i.e. the most relevant
area is near source number 1 in figure 1. A second, weaker
area of relevance is near source number 2. This accurately
reflects the simulation of data set 2, where class 1 was defined
by activity in these two sources, with the signal amplitude of
source number 1 twice that of source number 2.



Fig. 2. Visualisation of the CSP classifier: class 1. Slices are labelled with their corresponding MNI coordinates. Top left: sorted dipole weight distribution.

To preserve space, the other figures only show the sagittal
density slices. Figure 5 visualises the second class of data set
2, as identified by the CSP classifier. This accurately reflects
the correct locations of source numbers 3 and 4.

Figure 3 visualises the regions of interest of the LDA
classifier calibrated on data set 1 in a selected time window.
This, too, accurately reflects the ground truth that sources in
the right-occipital and left-frontal lobes (i.e. numbers 1 and 2
in figure 1) were generators of the class differences. Notably,
we see that the sources are weighted roughly equally, with
source 2 weighted only slightly more than source 1. This is in
line with the signals that were generated by these two sources.
The amplitude of source 2 was four times that of source 1.
However, the probability of a signal occurring at all in source 2
was only 25%, whereas source 1 was active in each simulated
trial. The mean amplitude of these sources over all trials was
thus roughly the same, but their predictive value was not.

Figure 4 visualises the alternative weights for data set 1,
described in section II-B5. We see a high correlation density
for source number 1 and a significantly lower density for
source number 2. This reflects the difference in predictive
value between sources 1 and 2.

IV. SUMMARY

We simulated two data sets of 10 simulated participants
each. Each participant’s data was simulated with unique
locations for the generator sources, with some consistency
maintained for the sources that generated the class differences.
In one data set, these class differences were caused by the
presence of event-related potentials from two sources. In the
other, differences were caused by the presence of alpha-band
activity in different sources. An ICA solution was available
for the simulated data.

Two different classifiers were trained on the two data sets
respectively: A WM classifier, focusing on temporal differ-
ences between the classes in data set 1, and a CSP classifier,
focusing on spectral differences in data set 2.

For the WM classifier, we transformed the LDA filter
weights into patterns representing the forward model. For the
CSP classifier, we separated the produced CSP patterns and
weighted them by computed forward weights.

We then transformed these patterns into relevance weights
connected to independent components using the unmixing
matrix of each participant’s data’s ICA solution. Since a 3D



Fig. 3. Partial visualisation (sagittal section) of the WM classifier: projected
LDA weights.

Fig. 4. Partial visualisation (sagittal section) of source feature class correlation
in data set 1: source correlation weights.

position in the brain was calculated for each of these inde-
pendent components, we were able to generate a ‘relevance
density plot’ indicating the classifiers’ regions of interest.
As we used simulated EEG data, we compared the obtained
results to the known ground truth and could verify that the
generated plots corresponded to the original sources.

For the WM classifier, we also presented an alternative
method to calculate relevance weights directly in source space.
This method can provide a different perspective on the brain
dynamics underlying the class differences.

V. DISCUSSION

In our earlier work [18] we presented a combination of
the two WM-based methods discussed here, where the classi-
fier’s regions of interest were additionally weighted by those
regions’ class-correlation. In this paper we simulated data

Fig. 5. Partial visualisation (sagittal section) of the CSP classifier: class 2.

Fig. 6. Combined projection patterns of the two class-dependent sources in
data set 1, for four of the simulated participants.

that highlights how these two methods can provide different
perspectives when used separately.

The use of simulated data enabled us to compare the
method’s results to a known ground truth. We see that under
these circumstances, the method accurately recovers the cor-
rect sources in the brain. Of course, simulated data represents
only a first test case. The previous iteration of this method has
already been shown to produce results in line with hypotheses
on real EEG data [18], and we will continue this work by
validating the current method on other real EEG recordings.
We will also extend the method to filter-bank CSP [28], and
make all code available for free.

Simulated data also allowed us to use a ground-truth ICA
decomposition to initially control for the varying results that
different ICA methods provide. In future work, we will further-
more apply the method to simulated data with ICA decomposi-
tions of varying quality. And, since estimating the covariance
matrix is a fundamental step in producing the patterns, we
will further investigate the influence of different covariance
estimation methods on the patterns and their projections into
source space.

The method presented here visualises the areas in the
brain that the classifier focuses on, for two popular clas-
sification methods. The patterns that can be obtained from
these classifiers can be neurophysiologically interpreted on
their own [26]. However, the current method provides two
additional advantages. First of all, the patterns are decomposed
into individual sources. A single pattern can consist of the



combined projections of any number of different sources,
and different source projections can interfere with each other
to the point of making interpretation difficult. For example,
figure 6 shows the combined projection patterns of the two
class-dependent sources in data set 1 for four of the simulated
participants. As we can see, minor changes in source location
and orientation produce large differences in the projection
pattern. From these patterns, it is not obvious that they are
produced by two distinct sources, let alone their location. With
accurate ICA models, we can untangle this relation and show
individual source contributions to the classifier.

Secondly, this method uses an equivalent dipole model
to visualise the sources in 3D space. Projection patterns
coming from roughly the same cortical area can vary markedly
between participants due to anatomical differences. A 3D
visualisation of the cortical areas corrects for these differences
in a way that e.g. a mean projection pattern cannot. We
visualise the combined relevance weights of all participants in
a single plot to highlight the most consistently relevant areas.

It is important to be able to perform an inspection of a
classifier’s regions of interest, and compare the results to our
hypotheses as well as other perspectives on the data. When we
design a BCI application, we hypothesise what functions (and
thus, what regions) of the brain will be targeted. Visualisation
methods such as this one enable us to compare a classifier’s
actual regions of interest to these hypotheses, and validate our
assumptions—and to gather new insights about the cortical
processes underlying the observed effects.
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